Search Results
BlockC.cc
/*
* MoMEMta: a modular implementation of the Matrix Element Method
* Copyright (C) 2017 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <momemta/Math.h>
#include <momemta/Module.h>
#include <momemta/ParameterSet.h>
#include <momemta/Solution.h>
#include <momemta/Types.h>
class BlockC : public Module {
public:
BlockC(PoolPtr pool, const ParameterSet& parameters) : Module(pool, parameters.getModuleName()) {
sqrt_s = parameters.globalParameters().get<double>("energy");
pT_is_met = parameters.get<bool>("pT_is_met", false);
s12 = get<double>(parameters.get<InputTag>("s12"));
s123 = get<double>(parameters.get<InputTag>("s123"));
m1 = parameters.get<double>("m1", 0.);
p2 = get<LorentzVector>(parameters.get<InputTag>("p2"));
p3 = get<LorentzVector>(parameters.get<InputTag>("p3"));
if (parameters.exists("branches")) {
auto branches_tags = parameters.get<std::vector<InputTag>>("branches");
for (auto& t : branches_tags)
m_branches.push_back(get<LorentzVector>(t));
}
// If the met input is specified, get it, otherwise retrieve default
// one ("met::p4")
InputTag met_tag;
if (parameters.exists("met")) {
met_tag = parameters.get<InputTag>("met");
} else {
met_tag = InputTag({"met", "p4"});
}
m_met = get<LorentzVector>(met_tag);
};
virtual Status work() override {
solutions->clear();
const double p2Sq = p2->M2();
// Don't spend time on unphysical corner of the phase-space
if (*s12 >= *s123 || *s123 >= SQ(sqrt_s) || *s12 <= p2Sq + SQ(m1))
return Status::NEXT;
// pT will be used to fix the transverse momentum of the reconstructed neutrinos
// We can either enforce momentum conservation by disregarding the MET, ie:
// pT = sum of all the visible particles,
// Or we can fix it using the MET given as input:
// pT = -MET
// In the latter case, it is the user's job to ensure momentum conservation at
// the matrix element level (by using the Boost module, for instance).
LorentzVector pT;
if (pT_is_met) {
pT = -*m_met;
} else {
pT = *p2;
for (size_t i = 0; i < m_branches.size(); i++) {
pT += *m_branches[i];
}
}
// p1x = alpha1 E1 + beta1 ALPHA + gamma1
// p1y = ...(2)
// p1z = ...(3)
// E3 = ...(4)
const double cosphi3 = std::cos(p3->Phi());
const double sinphi3 = std::sin(p3->Phi());
const double costhe3 = std::cos(p3->Theta());
const double sinthe3 = std::sin(p3->Theta());
const double E2 = p2->E();
const double p2x = p2->Px();
const double p2y = p2->Py();
const double p2z = p2->Pz();
const double pTx = pT.Px();
const double pTy = pT.Py();
// Term appears regularly, compute once.
const double X = p2x * sinthe3 * cosphi3 + p2y * sinthe3 * sinphi3 + p2z * costhe3;
// Denominator that appears in several of the follwing eq.
// No need to compute it multiple times
const double denom = 2. * (E2 - X);
const double beta1 = (cosphi3 * sinthe3) / denom;
const double gamma1 =
-(2 * E2 * pTx - 2 * X * pTx - *s12 * cosphi3 * sinthe3 + *s123 * cosphi3 * sinthe3) / denom;
const double beta2 = (sinthe3 * sinphi3) / denom;
const double gamma2 =
-(2 * E2 * pTy - 2 * X * pTy - *s12 * sinthe3 * sinphi3 + *s123 * sinthe3 * sinphi3) / denom;
const double alpha3 = E2 / p2z;
const double beta3 = (p2x * cosphi3 * sinthe3 + p2y * sinthe3 * sinphi3) / (-p2z * denom);
const double gamma3 = 0.5 *
(-*s12 + SQ(m1) + p2Sq + 2 * p2x * (pTx + sinthe3 * cosphi3 * (*s123 - *s12) / denom) +
2 * p2y * (pTy + sinthe3 * sinphi3 * (*s123 - *s12) / denom)) /
p2z;
const double beta4 = -1. / denom;
const double gamma4 = (*s123 - *s12) / denom;
// a11 E1^2 + a22 ALPHA^2 + a12 E1*ALPHA + a10 E1 + a01 ALPHA + a00 = 0
// id. with bij
const double a11 = SQ(alpha3) - 1;
const double a22 = SQ(beta1) + SQ(beta2) + SQ(beta3);
const double a12 = 2. * (alpha3 * beta3);
const double a10 = 2. * (alpha3 * gamma3);
const double a01 = 2. * (beta1 * gamma1 + beta2 * gamma2 + beta3 * gamma3);
const double a00 = SQ(gamma1) + SQ(gamma2) + SQ(gamma3) + SQ(m1);
const double b11 = 0;
const double b22 = beta4 * (-beta1 * sinthe3 * cosphi3 - beta2 * sinthe3 * sinphi3 - beta3 * costhe3);
const double b12 = beta4 - alpha3 * beta4 * costhe3;
const double b10 = gamma4 - alpha3 * gamma4 * costhe3;
const double b01 = -0.5 - (beta1 * gamma4 + beta4 * gamma1) * sinthe3 * cosphi3 -
(beta2 * gamma4 + beta4 * gamma2) * sinthe3 * sinphi3 -
(beta3 * gamma4 + beta4 * gamma3) * costhe3;
const double b00 = gamma4 * (-gamma1 * sinthe3 * cosphi3 - gamma2 * sinthe3 * sinphi3 - gamma3 * costhe3);
// Find the intersection of the 2 conics (at most 4 real solutions for (e1,ALPHA))
std::vector<double> e1, ALPHA;
solve2Quads(a11, a22, a12, a10, a01, a00, b11, b22, b12, b10, b01, b00, e1, ALPHA, false);
// For each solution (e1,ALPHA), find the neutrino 4-momentum p1
if (e1.size() == 0)
return Status::NEXT;
for (unsigned int i = 0; i < e1.size(); i++) {
const double E1 = e1.at(i);
const double alp = ALPHA.at(i);
//Make sure E1 is not negative
if (E1 <= 0.)
continue;
const double E3 = beta4 * alp + gamma4;
// Make sure E3 is not negative
if (E3 <= 0.)
continue;
const double p1x = beta1 * alp + gamma1;
const double p1y = beta2 * alp + gamma2;
const double p1z = alpha3 * E1 + beta3 * alp + gamma3;
LorentzVector p1(p1x, p1y, p1z, E1);
const double p3x = E3 * sinthe3 * cosphi3;
const double p3y = E3 * sinthe3 * sinphi3;
const double p3z = E3 * costhe3;
LorentzVector p3_sol(p3x, p3y, p3z, E3);
// Check if solutions are physical
LorentzVector tot = p1 + *p2 + p3_sol;
for (size_t i = 0; i < m_branches.size(); i++) {
tot += *m_branches[i];
}
const double q1Pz = std::abs(tot.Pz() + tot.E()) / 2.;
const double q2Pz = std::abs(tot.Pz() - tot.E()) / 2.;
if (q1Pz > sqrt_s / 2 || q2Pz > sqrt_s / 2)
continue;
if (!ApproxComparison((p1 + p3_sol + pT).Pt(), 0.)) {
#ifndef NDEBUG
LOG(trace) << "[BlockC] Throwing solution because total Pt is incorrect. "
<< "Expected " << 0. << ", got " << (p1 + p3_sol + pT).Pt();
#endif
continue;
}
if (!ApproxComparison(p1.M() / p1.E(), m1 / p1.E())) {
#ifndef NDEBUG
LOG(trace) << "[BlockC] Throwing solution because p1 has an invalid mass. " <<
"Expected " << m1 << ", got " << p1.M();
#endif
continue;
}
if (!ApproxComparison((p1 + *p2).M2(), *s12)) {
#ifndef NDEBUG
LOG(trace) << "[BlockC] Throwing solution because of invalid invariant mass. " <<
"Expected " << *s12 << ", got " << (p1 + *p2).M2();
#endif
continue;
}
if (!ApproxComparison((p1 + *p2 + p3_sol).M2(), *s123)) {
#ifndef NDEBUG
LOG(trace) << "[BlockC] Throwing solution because of invalid invariant mass. " <<
"Expected " << *s123 << ", got " << (p1 + *p2 + p3_sol).M2();
#endif
continue;
}
const double jacobian = SQ(E3) * sinthe3 / (32 * SQ(M_PI) * SQ(sqrt_s) *
std::abs((p3_sol.Dot(p1 + *p2) + SQ(p3x) + SQ(p3y)) * (E2 * p1z - E1 * p2z) + p3x * p3z * (E1 * p2x - E2 * p1x)
+ p3x * E3 * (p1x * p2z - p1z * p2x) + p3y * p3z * (E1 * p2y - E2 * p1y) + E3 * p3y * (p1y * p2z - p1z * p2y)));
Solution s {{p1, p3_sol}, jacobian, true};
solutions->push_back(s);
}
return solutions->size() > 0 ? Status::OK : Status::NEXT;
}
private:
double sqrt_s;
bool pT_is_met;
double m1;
// Inputs
Value<double> s12;
Value<double> s123;
std::vector<Value<LorentzVector>> m_branches;
Value<LorentzVector> m_met;
Value<LorentzVector> p2;
Value<LorentzVector> p3;
// Outputs
std::shared_ptr<SolutionCollection> solutions = produce<SolutionCollection>("solutions");
};
REGISTER_MODULE(BlockC)
.Input("s12")
.Input("s123")
.Input("p2")
.Input("p3")
.OptionalInputs("branches")
.Input("met=met::p4")
.Output("solutions")
.GlobalAttr("energy:double")
.Attr("pT_is_met:bool=false")
.Attr("m1:double=0");